
Creating an OVAL Report Template 

The OVAL Reports Schema is a new category of the OVAL Schema. Its purpose is to drive 

collection of system state information and format it into a report. This report can then be used as 

evidence of compliance or non-compliance with a given configuration recommendation or 

policy. This document provides an overview of the OVAL Reports Schema and a quick tutorial 

as to how to use this schema to create an OVAL Report Template file. 

OVAL Overview 
Open Vulnerability and Assessment Language (OVAL™) is an international, information 

security, community standard to promote open and publicly available security content, and to 

standardize the transfer of this information across the entire spectrum of security tools and 

services. OVAL includes a schema used to encode system details, and an assortment of content 

repositories held throughout the community. The schema standardizes the three main steps of the 

assessment process: representing configuration information of systems for testing; analyzing the 

system for the presence of the specified machine state (vulnerability, configuration, patch state, 

etc.); and reporting the results of this assessment. The repositories are collections of publicly 

available and open content that utilize the schema. 

 

The OVAL community has previously developed four schemas to serve as the framework and 

vocabulary of the OVAL Language. These schemas support three steps of the assessment 

process: an OVAL System Characteristics schema for representing system information, an 

OVAL Definition schema for expressing a specific machine state, an OVAL Variables schema to 

support flexibility in definitions, and an OVAL Results schema for reporting the results of an 

assessment. OVAL Reports represent a fifth XML schema within OVAL.  

OVAL Reports Overview 
The OVAL Reports Schema is used by an author to identify system information to collect and to 

then format that information into a structured document. Unlike an OVAL Definition, which 

drives the automated assertion of system state, an OVAL Report Template seeks to drive the 

presentation of discovered information, making no judgment about correctness, giving users an 

awareness of important characteristics of a system's configuration. If an evaluation based on the 

generated report is desired, other tools (such as the Open Checklist Interactive Language, or 

OCIL) will need to be employed. 

 

An OVAL Report Template file, which is an XML file that follows the OVAL Reports Schema, 

consists of three or four parts. As with all OVAL files, the first part consists of a generator 

element which identifies when a file was created, the schema version, and optionally additional 

information, such as the name and version of tools used to assist the creation. Following this is 

the oval_definitions section that defines the system objects that need to be collected from the 

system. This section reuses the Object structure found in an OVAL Definition and is identical to 

a file created using the OVAL Definition schema except that it does not contain the Definition or 

Test blocks, as such structures are unnecessary in an OVAL Report Template.  The third section 



is an XSLT 1.0 stylesheet. The stylesheet contains all the instructions used to organize and 

format the output report and can be understood by any XSLT 1.0 processor. Finally, the template 

file may contain an optional signature element using XMLDSig. This can be included to provide 

some assurance of the integrity of the file. 

 

In addition to its XML schema, OVAL Report also includes a set of XSLT templates designed to 

handle common formatting tasks. These templates exist in a separate XSLT file and thus can be 

used independently of any OVAL Report Template file. An overview of the templates in this file 

is provided below. 

Motivations and Use Cases 
The OVAL Reports Schema was developed in response to a community need to support system 

configuration recommendations for which it was possible to automatically collect the relevant 

information, but where it was not possible to evaluate this information in an automated way. A 

prime example of this would be recommendations that deal with access rights as they often are 

expressed as "Limit access to a given resource only to trusted individuals who need access for 

their jobs." While it is often possible to automatically extract a list of people who have access to 

a resource, the list of users who belong on that list will vary from location to location. With 

OVAL Reports, a report could be generated listing the users of interest, possibly cross-correlated 

with other relevant characteristics of those users, and the person performing the assessment could 

then use the report to determine compliance with the given recommendation. 

 

As noted, one of the primary use cases of OVAL Reports is to create a report that can be used to 

determine compliance with a system configuration recommendation. However, OVAL Reports 

do not contain any structures to query a reader as to whether the output report document 

indicates adherence to a given recommendation. There is an existing schema for the creation of 

an interactive questionnaire in the form of OCIL. This can be accomplished by utilizing an 

XCCDF complex-check where the first component check generates the OVAL Report output and 

the second component check is an OCIL check that prompts the user to review the report and 

answer a questionnaire.  For more information about OCIL and XCCDF please see 

http://scap.nist.gov/specifications/ocil/index.html and http://scap.nist.gov/specifications/xccdf/, 

respectively. 

Creating an OVAL Report Template 
An OVAL Report Template consists of four blocks: the generator, the oval_definitions, and the 

stylesheet are all required blocks while the signature block is optional. This section will go 

through each of these blocks, describe its purpose, and provide pointers regarding its 

construction. 

<generator> 
An OVAL Report Template begins with a generator block. The generator element uses the 

GeneratorType defined in the OVAL Common Schema and utilized by many other OVAL 

schemas, including the Definitions, System Characteristics, and Results schemas. The generator 

block must identify the OVAL schema version and must also include a timestamp. It may 

http://scap.nist.gov/specifications/ocil/index.html
http://scap.nist.gov/specifications/xccdf/


optionally include additional information such the name and version of the editor used to 

generate the OVAL Report Template file. 

<oval_definitions> 
Following the generator block is the oval_definitions block. The structure of this element is 

identical to that of an OVAL Definition file. However, note that both the <definitions> and 

<tests> elements must not appear in an OVAL Report Template. This allows authors to utilize 

existing OVAL Content when creating a Report Template file with minimal modifications. The 

generator block within the oval_definitions is still required and holds generator information 

associated with the oval_definitions block, primarily for situations where existing OVAL 

Content is being re-used. If the content of the oval_definitions block was created fresh rather 

than copied from pre-existing content, the oval_definitions generator would be identical to the 

generator at the beginning of the Report Template file. 

 

Creating an OVAL Report Template file follows most of the steps one would use when creating 

an OVAL Definition file. The primary structures of interest are OVAL Objects since it is these 

elements that identify the system data that will be formatted into a report. OVAL States are also 

used for their ability to filter OVAL Objects using the Object "set" structures. As mentioned 

before, OVAL Reports do not include any evaluation of discovered state so OVAL States are not 

used in this capacity. Similarly, since OVAL Definition and Test structures exist primarily to 

structure the evaluation of machine state, neither of these are relevant in an OVAL Report 

Template and they should not appear in the oval_definitions block. OVAL Variables fulfill the 

same uses in OVAL Reports as they do in OVAL Definition files. Finally, the oval_definitions 

section may contain its own set of XMLDSig signatures so re-used definition structures can 

retain their original integrity checks. 

 

For each type of included structure (Objects, States, Variables, and signatures), OVAL Reports 

use the same schemas and structures used when creating an OVAL Definitions file. Readers are 

directed towards the document on the OVAL web site 

(http://oval.mitre.org/oval/about/documents.html) for more guidance on creating OVAL 

Definition files. 

<stylesheet> 
The stylesheet section is used to format the final report file from the raw information collected 

by OVAL. The stylesheet block is an XSLT stylesheet and its contents follow the structures of 

the XSLT 1.0 language. (The XSLT specification is available from the W3C: 

http://www.w3.org/TR/xslt.)  

 

The stylesheet section uses the OVAL System Characteristics file that would be produced in 

response to the collection of the OVAL Objects defined in the oval_definitions section. Authors 

create XSLT instructions to process this source file into the desired output report. All the XML 

processing abilities of XSLT are available to authors for the processing and presentation of the 

desired information. In addition, OVAL Reports include a suite of helper templates that perform 

commonly needed processing actions: 

 

 getOvalItemsOfOvalObject – Takes the ID string of an OVAL Object and returns all the 

System Characteristic Items that were collected on behalf of the named Object. 

http://oval.mitre.org/oval/about/documents.html
http://www.w3.org/TR/xslt


 getOvalObjectDiscoveryStatus – Takes the ID string of an OVAL Object and returns the 

string of that Object's flag attribute, which indicates whether the Object's target system 

state was successfully collected. 

 getOvalObjectOfOvalItem – Given the ID string of a System Characteristics Item, return 

the ID string of the OVAL Object for which it was collected. 

 getVarValsFromOvalObject – Given the ID strings of an OVAL Object and an OVAL 

Variable, return the value of the named Variable at the time it was used by the named 

Object as a string. 

 

The list of templates continues to evolve based on the needs of the OVAL Community and is 

likely to grow in the future. All these templates exist in a separate XSLT file and, as such, could 

be imported and used in any XSLT 1.0 document. 

<Signature> 
This optional section of the OVAL Report Template allows authors to include integrity checks 

for the document as a whole. The body of this element follows the XMLDSig standard. (The 

XMLDSig specification is available from the W3C: http://www.w3.org/TR/xmldsig-core/.) 

Example Report Template 
This section provides a simple example of an OVAL Report Template along with the output it 

might produce on some system.  The OVAL Report Template in this example collects the list of 

groups and users listed in the ACL of a particular file (regedit.exe) and displays those users in a 

table along with their effective permissions to the file. Because the permissions themselves are 

associated with SIDs and SIDs are not easily understood by human readers, the SID associated 

with each set of permissions is translated into a human-readable name whenever possible.  

 

Figure 1. An OVAL Report Template 

1 

<oval_report_template xmlns="http://oval.mitre.org/XMLSchema/oval-reports-5"  

                      xmlns:oval="http://oval.mitre.org/XMLSchema/oval-common-5" 

                      xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

                      xsi:schemaLocation="http://oval.mitre.org/XMLSchema/oval-reports-5  

                                      oval-reports-schema.xsd          

                                      http://oval.mitre.org/XMLSchema/oval-definitions-5   

                                      oval-definitions-schema.xsd  

                                      http://oval.mitre.org/XMLSchema/oval-definitions-5#windows  

                                      windows-definitions-schema.xsd"> 

2    <generator> 

3       <oval:schema_version>5.8</oval:schema_version> 

4       <oval:timestamp>2010-04-09T11:13:00-06:00</oval:timestamp> 

5    </generator> 

6 
   <oval_definitions xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5"  

                     xmlns:win-def="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows"> 

7       <generator> 

8          <oval:schema_version>5.6</oval:schema_version> 

9          <oval:timestamp>2009-12-17T10:41:00-05:00</oval:timestamp> 

10       </generator> 

11       <objects> 

12 

         <fileeffectiverights53_object  

                           xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows"   

                           id="oval:example:obj:1" version="1"  

                           comment="Collect the permissions of all of the SIDs who have  

                                    permissions that are explicitly granted or denied in the  

                                    ACL of the file 'C:\WINDOWS\regedit.exe'." > 

http://www.w3.org/TR/xmldsig-core/


13             <path>C:\WINDOWS</path> 

14             <filename>regedit.exe</filename> 

15             <trustee_sid operation="pattern match">.*</trustee_sid> 

16          </fileeffectiverights53_object> 

17 

         <sid_sid_object xmlns="http://oval.mitre.org/XMLSchema/oval-definitions-5#windows"  

                         id="oval:example:obj:2" version="1"  

                         comment="Collect the trustee_name (username) and trustee_domain  

                                  information for the SIDs listed in the ACL of the file  

                                  'C:\WINDOWS\regedit.exe'.  This object will serve as a  

                                  mapping between the SIDs in the ACL and their human- 

                                  readable usernames." > 

18             <trustee_sid var_ref="oval:example:var:1" var_check="at least one"/> 

19          </sid_sid_object> 

20       </objects> 

21       <variables> 

22 

         <local_variable id="oval:example:var:1" version="1" datatype="string" 

                         comment="This variable represents all of the SIDs, on the system,  

                                  that have permissions explicitly granted or denied in  

                                  the ACL of the file 'C:\WINDOWS\regedit.exe'."> 

23             <object_component object_ref="oval:example:obj:1" item_field="trustee_sid"/> 

24          </local_variable> 

25       </variables> 

26    </oval_definitions> 

27 

   <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 

                   xmlns:win-sc= 

                         "http://oval.mitre.org/XMLSchema/oval-system-characteristics-5#windows" 

                   version="1.0"> 

28       <xsl:import href="oval-report-templates.xsl"/> 

29       <xsl:template match="/"> 

30          <xsl:variable name="perms"> 

31             <xsl:call-template name="getOvalItemsOfOvalObject"> 

32                <xsl:with-param name="objid">oval:example:obj:1</xsl:with-param> 

33             </xsl:call-template> 

34          </xsl:variable> 

35          <xsl:variable name="users"> 

36             <xsl:call-template name="getOvalItemsOfOvalObject"> 

37                <xsl:with-param name="objid">oval:example:obj:2</xsl:with-param> 

38             </xsl:call-template> 

39          </xsl:variable> 

40          <html> 

41             <head><title>User access to regedit.exe</title></head> 

42             <body> 

43                <xsl:text>The following users are named in the ACL for regedit.exe</xsl:text> 

44                <br/> 

45                <table border="true"> 

46                   <tr><th>User (SID)</th><th>Granted permission</th></tr> 

47                   <xsl:for-each select="$perms/*"> 

48                      <tr> 

49                         <td> 

50                            <xsl:variable name="current-user-sid"> 

51                               <xsl:value-of select="./win-sc:trustee_sid"/> 

52                            </xsl:variable> 

53 
                           <xsl:value-of select="$users/*[./win-sc:trustee_sid =  

                                                       $current-user-sid]/win-sc:trustee_name"/> 

54                            <xsl:text> (</xsl:text> 

55                            <xsl:value-of select="$current-user-sid"/> 

56                            <xsl:text>)</xsl:text> 

57                         </td> 

58                         <td> 

59                            <xsl:variable name="permission-list"> 



60                               <xsl:for-each select="node()[.='1']"> 

61                                  <xsl:value-of select="local-name()"/> 

62                                  <xsl:text> </xsl:text>  

63                               </xsl:for-each> 

64                            </xsl:variable> 

65                            <xsl:choose> 

66                               <xsl:when test="$permission-list=''">NO ACCESS</xsl:when> 

67                               <xsl:otherwise> 

68                                  <xsl:value-of select="$permission-list"/> 

69                               </xsl:otherwise> 

70                            </xsl:choose> 

71                         </td> 

72                      </tr> 

73                   </xsl:for-each> 

74                </table> 

75             </body> 

76          </html> 

77       </xsl:template> 

78    </xsl:stylesheet> 

79 </oval_report_template> 

 

We can recognize several significant segments in the above template: 

 Lines 2-5 – This is the generator block of the Report Template itself 

 Lines 6-26 – This is the oval_definitions block 

o Line 7-10 – This is the generator of the oval_definitions block. Note that this 

differs from the generator block of the Template itself indicating that the 

definition content came from another source. 

o Line 12-16 – This defines a fileeffectiverights53_object. This collects all the 

permissions explicitly listed in the ACL of the named file (regedit.exe). 

o Line 17-19 – This defines the sid_sid_object. Sid_sid_objects collect the user and 

domain information associated with a given SID. We use the information 

discovered by this Object to effect a translation from SID to human-readable 

usernames. 

 Lines 27-78 – This is the stylesheet block 

o Line 28 – This imports the oval-report-templates stylesheet, which defines the 

helper templates that come with OVAL Reports. We need to import this 

stylesheet to make use the templates. 

o Line 29 – This starts the template definition. Notice that we match the "/" pattern 

to ensure this template will be applied to the whole system-characteristics file. 

Using more targeted matches is also possible, although most of the helper 

templates automatically operate off of the root of the system-characteristics file. 

o Line 30-39 – We populate two variables, one for each of the OVAL Objects we 

collected. We use the getOvalItemsOfOvalObject template from the helper 

templates stylesheet to populate these variables with the system-characteristic 

Items associated with each of the OVAL Objects. 

o Line 40-46 – These start the HTML document, set up the document header, and 

set up a table in the body of the document. 

o Line 47-48 – We use the XSLT for-each element to iterate through each set of 

permissions retrieved by the fileeffectiverights53_object, creating a new table row 

for each permission set. 



o Line 50-56 – In the first cell of the row we create a new variable that contains the 

SID as it appears in the current permission Item. We then print out the name 

collected from the sid_sid_object that matches the SID variable and then add the 

SID itself in parenthesis 

o Line 59-70 – In the second cell of the row we start by creating a new variable that 

contains the name of all the elements in the permission Item whose values are 1. 

These correspond to the permissions that have been granted. If the permission 

variable is empty we write "NO ACCESS", indicating that the given SID is 

explicitly given no access to the file. Otherwise, we write out the contents of the 

variable, thus enumerating all permissions granted to that SID in the file's ACL. 

o The remaining lines of the Report Template close out the table, the HTML 

document, the stylesheet, and the Report Template itself. 

 

The following table shows the start of the output report produced by the above Report Template 

when run against one particular system. 

 

Figure 2. OVAL Report Output 

The following users are named in the ACL for regedit.exe 

User (SID) Granted permission 

SYSTEM (S-1-5-18) 

standard_delete standard_read_control standard_write_dac 

standard_write_owner standard_synchronize generic_read 

generic_write generic_execute generic_all file_read_data 

file_write_data file_append_data file_read_ea file_write_ea 

file_execute file_delete_child file_read_attributes file_write_attributes  

OVALTEST-

PC\IUSR_OVALTEST-

PC (S-1-5-21-

1568420705-

1441692396-

607190668-1028) 

NO ACCESS 

Administrators (S-1-5-

32-544) 

standard_delete standard_read_control standard_write_dac 

standard_write_owner standard_synchronize generic_read 

generic_write generic_execute generic_all file_read_data 

file_write_data file_append_data file_read_ea file_write_ea 

file_execute file_delete_child file_read_attributes file_write_attributes  

Users (S-1-5-32-545) 

standard_read_control standard_synchronize generic_read 

generic_execute generic_all file_read_data file_read_ea file_execute 

file_read_attributes  

... ... 

 

This is a very simple sample and one could easily envision more elaborate OVAL Report 

Templates that could do things like convert groups into actual lists of users or correlate with 

other system information. Authors can make use of the full capabilities of XSLT 1.0 as well as 

all the system information one can specify using OVAL. Because of this the OVAL Reports 



Schema offers a great deal of power and flexibility to authors for the purpose of documenting 

system configuration information. 

Conclusion 
This document has provided an introduction to the OVAL Reports Schema. This is a living 

document since the OVAL Reports Schema will continue to evolve to meet the needs of the 

OVAL Community. Towards that end, all feedback and suggestions are welcomed – please send 

comments to the OVAL Developer List (oval-developer-list@lists.mitre.org) or, if you wish your 

comments to remain private, send them to the OVAL Moderator directly (oval@mitre.org). 

Please help us keep this schema useful and responsive to the needs of the security automation 

community. 

mailto:oval-developer-list@lists.mitre.org
mailto:oval@mitre.org

